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1. Introduction

Exactly solving the MLLA evolution equations for the quark and gluon inclusive spectra

and for 2-particle correlations inside one jet provided, at small x, in [1], analytical ex-

pressions for these observables, which were unfortunately limited, for technical reasons to

the “limiting spectrum” λ ≡ ln(Q0/ΛQCD) = 0. The goal of this second work is to go
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beyond this limit in an approximate scheme which proves very economical and powerful:

the steepest descent (SD) method. It offers sizable technical progress in the calculation of

both observables.

First, we perform a SD evaluation of the (quark and) gluon single inclusive distribu-

tions. Their full dependence on λ is given, including the normalization. The well known

shift to smaller values of x of the maximum of the distribution, as compared with DLA

calculations is checked, as well as its Gaussian shape around the maximum. Comparison

with the results obtained numerically in [2] is done.

As shown in [1], knowing the logarithmic derivatives of the inclusive spectra imme-

diately gives access to 2-particle correlations. This is accordingly our next step. Since,

in particular, the former prove to be infra-red stable in the limit λ → 0, the result can

be safely compared with the exact one obtained in [1]. The agreement turns out to be

excellent, and increases with the energy scale of the process.

Last, we evaluate 2-particle correlations inside one high energy jet and study their

behavior at Q0 6= ΛQCD. That one recovers the results of Fong & Webber [3] close to

the peak of the single inclusive distribution and when λ → 0 is an important test of the

validity and efficiency of the SD method. The quantitative predictions do not substantially

differ from the ones of [1] for the “limiting spectrum”, which stays the best candidate to

reproduce experimental results.

A conclusion summarizes the achievements, limitations and expectations of [1] and of

the present work. It is completed with two technical appendices.

2. Steepest descent evaluation of the single inclusive distribution

We consider the production of one hadron inside a quark or a gluon jet in a hard process.

It carries the fraction x of the total energy E of the jet. Θ0 is the half opening angle of the

jet while Θ is the angle corresponding to the first splitting with energy fraction x¿ z ¿ 1.

2.1 Variables and kinematics

The variables and kinematics of the process under consideration are the same as in section

3.1 of [1].

2.2 Evolution equations for particle spectra at MLLA

We define like in [1] the logarithmic parton densities

Q(`) ≡ xDQ(x), G(`) = xDG(x)

for quark and gluon jets in terms of which the system of evolution equations for particle

spectra at small x (see eqs. (42) and (43) of [1]) read

Q(`, y) = δ(`) +
CF
Nc

∫ `

0
d`′
∫ y

0
dy′γ2

0(`′ + y′)
(

1− 3

4
δ(`′ − `)

)
G(`′, y′), (2.1)

G(`, y) = δ(`) +

∫ `

0
d`′
∫ y

0
dy′γ2

0(`′ + y′)
(

1− aδ(`′ − `)
)
G(`′, y′), (2.2)
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where

a =
1

4Nc

[
11

3
Nc +

4

3
nfTR

(
1− 2CF

Nc

)]
nf=3

= 0.935. (2.3)

The terms ∝ 3
4 in (2.1) and ∝ a in (2.2) account for hard corrections to soft gluon multi-

plication, sub-leading g→qq̄ splittings, strict angular ordering and energy conservation.

2.3 Evolution equations; steepest descent evaluation

The exact solution of (2.2) is demonstrated in [1] to be given by the Mellin’s integral

representation

G (`, y) = (`+y+λ)

∫∫
dω dν

(2πi)2 e
ω`+νy

∫ ∞

0

ds

ν + s

(
ω (ν + s)

(ω + s) ν

)1/β(ω−ν)( ν

ν + s

)a/β
e−λs

= (`+y+λ)

∫∫
dω dν

(2πi)2 e
ω`+νy

∫ ∞

0

ds

ν + s

(
ν

ν + s

)a/β
eσ(s), (2.4)

where we have exponentiated the kernel (symmetrical in (ω, ν))

σ(s) =
1

β(ω − ν)
ln

(
ω(ν + s)

ν(ω + s)

)
− λs. (2.5)

Eq. (2.4) will be estimated by the SD method. The value s0 of the saddle point, satisfying
dσ(s)
ds

∣∣∣
s=s0

= 0, reads (see [7])

s0(ω, ν) =
1

2

[√
4

βλ
+ (ω − ν)2 − (ω + ν)

]
. (2.6)

One makes a Taylor expansion of σ(s) nearby s0:

σ(s) = σ(s0) +
1

2
σ′′(s0)(s− s0)2 +O

(
(s− s0)2

)
, σ′′(s0) = −βλ2

√
4

βλ
+ (ω − ν)2 < 0,

(2.7)

such that

∫ ∞

0

ds

ν + s

(
ω (ν + s)

(ω + s) ν

)1/β(ω−ν)( ν

ν + s

)a/β
e−λs

λÀ1≈ 2

√
π

2

eσ(s0)

(ν + s0)
√
|σ′′(s0) |

(
ν

ν + s0

)a/β
.(2.8)

The condition λÀ 1⇒αs/π ¿ 1 1 guarantees, in particular, the convergence of the

perturbative approach. Substituting (2.8) in (2.4) yields

G (`, y) ≈ 2

√
π

2
(`+ y + λ)

∫∫
dω dν

(2πi)2

eφ(ω,ν,`,y)

(ν + s0)
√
| σ′′(s0) |

(
ν

ν + s0

)a/β
, (2.9)

where the argument of the exponential is

φ (ω, ν, `, y) = ω`+ νy +
1

β (ω − ν)
ln
ω (ν + s0)

(ω + s0) ν
− λs0. (2.10)

1in (2.7), λ appears to the power 3/2 > 1, which guarantees the fast convergence of the SD as λ increases.
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Once again, we perform the SD method to evaluate (2.9). The saddle point (ω0, ν0)

satisfies the equations

∂φ

∂ω
= `− 1

β (ω − ν)2 ln
ω (ν + s0)

(ω + s0) ν
+

1

βω (ω − ν)
− λ(ν + s0)

(ω − ν)
= 0, (2.11a)

∂φ

∂ν
= y +

1

β (ω − ν)2 ln
ω (ν + s0)

(ω + s0) ν
− 1

βν (ω − ν)
+ λ

(ω + s0)

(ω − ν)
= 0. (2.11b)

Adding and subtracting (2.11a) and (2.11b) gives respectively

ω0ν0 =
1

β (`+ y + λ)
, (2.12a)

y − ` =
1

β (ω0 − ν0)

(
1

ω0
+

1

ν0

)
− 2

β (ω0 − ν0)2 ln
ω0 (ν0 + s0)

(ω0 + s0) ν0
− λω0 + ν0 + 2s0

ω0 − ν0
; (2.12b)

(ω0, ν0) also satisfies (from (2.6))

(ω0 + s0) (ν0 + s0) =
1

βλ
. (2.13)

One can substitute the expressions (2.11a) and (2.11b) of ` and y into (2.10), which

yields

ϕ ≡ φ(ω0, ν0, `, y) =
2

β (ω0 − ν0)
ln
ω0 (ν0 + s0)

(ω0 + s0) ν0
. (2.14)

Introducing the variables (µ, υ) [7] to parametrize (ω0, ν0) through

ω0 (ν0) =
1√

β(`+y+λ)
e±µ(`,y), (ω0 + s0) (ν0 + s0) =

1√
βλ

e±υ(`,y), (2.15)

one rewrites (2.14) and (2.12b) respectively in the form

ϕ(µ, υ) =
2√
β

(√
`+ y + λ−

√
λ
) µ− υ

sinhµ− sinhυ
, (2.16)

y − `
y + `

=
(sinh 2µ− 2µ)− (sinh 2υ − 2υ)

2
(
sinh2 µ− sinh2 υ

) ; (2.17a)

moreover, since ω0 − ν0 = (ω0 − s0)− (ν0 − s0), (µ, υ) also satisfy

sinhυ√
λ

=
sinhµ√
`+ y + λ

. (2.17b)

Performing a Taylor expansion of φ(ω, ν, `, y) around (ω0, ν0), which needs evaluating
∂2φ
∂ω2 , ∂2φ

∂ν2 and ∂2φ
∂ω∂ν (see appendix A.1), treating (Y + λ) as a large parameter and making

use of (2.15) provides the SD result

G(`, y) ≈ N (µ, υ, λ) exp

[
2√
β

(√
`+ y + λ−

√
λ
) µ− υ

sinhµ− sinhυ
+υ − a

β
(µ− υ)

]
, (2.18)
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where

N (µ, υ, λ) =
1

2
(`+y+λ)

(
β
λ

)1/4

√
π cosh υ DetA(µ, υ)

(
λ

`+ y + λ

)a/2β

with (see details in appendix A.1)

DetA(µ, ν) = β (`+y+λ)3

[
(µ−υ) cosh µ cosh υ+coshµ sinh υ−sinhµ cosh υ

sinh3 µ cosh υ

]
. (2.19)

2.3.1 Shape of the spectrum given in eq. (2.18)

We normalize (2.18) by the MLLA mean multiplicity inside one jet [8]

n̄(Y )
λÀ1≈ 1

2

(
Y + λ

λ

)−1

2

a

β
+

1

4 exp

[
2√
β

(√
Y + λ−

√
λ
)]
.

The normalized expression for the single inclusive distribution as a function of ` = ln(1/x)

is accordingly obtained by setting y = Y − ` in (2.18)

G(`, Y )

n̄(Y )
≈
√

β1/2(Y + λ)3/2

π cosh υDetA(µ, υ)
exp

[
2√
β

(√
Y + λ−

√
λ
)

×
(

µ− υ
sinhµ− sinhυ

− 1

)
+ υ − a

β
(µ− υ)

]
. (2.20)

One can explicitly verify that (2.20) preserves the position of the maximum [8 – 10] at

`max =
Y

2
+

1

2

a

β

(√
Y + λ−

√
λ
)
>
Y

2
, (2.21)

as well as the gaussian shape of the distribution around (2.21) (see appendix A.2)

G(`, Y )

n̄(Y )
≈
(

3

π
√
β
[
(Y + λ)3/2 − λ3/2

]
)1/2

exp

(
− 2√

β

3

(Y + λ)3/2 − λ3/2

(`− `max)2

2

)
.

(2.22)

In figure 1 we compare for Y = 10 and λ = 2.5 the MLLA curve with DLA (by setting

a = 0 in (2.20)). The general features of the MLLA curve (2.20) at λ 6= 0 are in good

agreement with those of [2].

The shape of the single inclusive spectrum given by (2.20) can easily be proved to be

“infrared stable” (it has indeed a final limit when λ→ 0).

2.4 Logarithmic derivatives

Their calculation is important since they appear in the expressions of 2-particle correlations.

Exponentiating the (`, y) dependence of the factor N in (2.18), we decompose the

whole expression in two pieces

ψ = ϕ+ δψ, (2.23)

– 5 –
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Figure 1: SD normalized spectrum: DLA (blue), MLLA (green); Y = 10.0, λ = 2.5.

where ϕ, given in (2.16), is the DLA term for the shape of the distribution [7], and

δψ = −1

2

(
1 +

a

β

)
ln(`+ y + λ)− a

β
µ+

(
1 +

a

β

)
υ +

1

2
ln[Q(µ, υ)] (2.24)

is the sub-leading contribution (in the sense that its derivative gives the MLLA correction),

where

Q(µ, υ) ≡ β(`+ y + λ)3

cosh υDet A(µ, υ)
=

sinh3 µ

(µ−υ) coshµ cosh υ+coshµ sinhυ−sinhµ cosh υ
.

By the definition of the saddle point, the derivatives of (2.16) over ` and y respectively

read:

ϕ` = ω0 = γ0e
µ, ϕy = ν0 = γ0e

−µ. (2.25)

We introduce (see appendix A.3)

L(µ, υ) = − a
β

+ L(µ, υ), L(µ, υ) =
1

2

∂

∂µ
ln[Q(µ, υ)],

K(µ, υ) = 1 +
a

β
+K(µ, υ), K(µ, υ) =

1

2

∂

∂υ
ln[Q(µ, υ)] (2.26)

and make use of

∂υ

∂`
= tanh υ

(
cothµ

∂µ

∂`
− 1

2
βγ2

0

)
,

∂υ

∂y
= tanh υ

(
cothµ

∂µ

∂y
− 1

2
βγ2

0

)
,

that follows from (2.17b), to write δψ`, δψy in terms of ∂µ
∂` , ∂µ

∂y

δψ` =−1

2

(
1+

a

β
+tanh υK(µ, υ)

)
βγ2

0 +

(
L(µ, υ)+tanh υ cothµK(µ, υ)

)
∂µ

∂`
, (2.27a)

δψy =−1

2

(
1+

a

β
+tanh υK(µ, υ)

)
βγ2

0 +

(
L(µ, υ)+tanh υ cothµK(µ, υ)

)
∂µ

∂y
. (2.27b)
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Figure 2: Behavior of Q̃(µ, υ) as a function of ` = ln(1/x).

Using (2.17a) and (2.17b) we obtain

∂µ

∂`
= −1

2
βγ2

0

[
1 + eµQ̃(µ, υ)

]
,

∂µ

∂y
=

1

2
βγ2

0

[
1 + e−µQ̃(µ, υ)

]
(2.28)

where

Q̃(µ, υ) =
coshµ sinhµ cosh υ − (µ− υ) cosh υ − sinhυ

(µ− υ) coshµ cosh υ + coshµ sinh υ − sinhµ cosh υ
, (2.29)

which we have displayed in figure 2 (useful for correlations).

Inserting (2.27b) and (2.28) into (2.27a) gives the SD logarithmic derivatives of the

single inclusive distribution

ψ`(µ, υ) = γ0e
µ +

1

2
aγ2

0

[
eµQ̃(µ, υ)− tanh υ − tanh υ cothµ

(
1 + eµQ̃(µ, υ)

)]

−1

2
βγ2

0

[
1 + tanh υ

(
1 +K(µ, υ)

)
+C(µ, υ)

(
1 + eµQ̃(µ, υ)

)]
+O(γ2

0) ,(2.30a)

ψy(µ, υ) = γ0e
−µ − 1

2
aγ2

0

[
2 + e−µQ̃(µ, υ) + tanh υ − tanh υ cothµ

(
1 + e−µQ̃(µ, υ)

)]

−1

2
βγ2

0

[
1+tanh υ

(
1+K(µ, υ)

)
− C(µ, υ)

(
1+e−µQ̃(µ, υ)

)]
+O(γ2

0) (2.30b)

where we have introduced (L and K have been written in (A.7) and (A.8))

C(µ, υ) = L(µ, υ) + tanh υ cothµ
(

1 +K(µ, υ)
)
. (2.31)

C does not diverge when µ ∼ υ → 0. One has indeed

lim
µ,υ→0

[L(µ, υ) + tanh υ cothµK(µ, υ)] = lim
µ,υ→0

2− 3υ
2

µ2 − υ3

µ3

4
(

1− υ3

µ3

) µ = 0

as well as

lim
µ,υ→0

tanh υ cothµ
(

1 + e±µQ̃(µ, υ)
)

= lim
µ,υ→0

=
3υµ

1− υ3

µ3

=
3
√

λ
Y+λ

1−
(

λ
Y+λ

)3/2
.
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Figure 3: SD logarithmic derivatives ψ` and ψy of the inclusive spectrum at Y = 7.5, for λ = 1.5

and λ = 3.5.

In (2.30a) and (2.30b) it is easy to keep trace of leading and sub-leading contributions. The

first O(γ0) term is DLA [7] while the second (∝ a→ “hard corrections”) and third (∝ β →
“running coupling effects”) terms are MLLA corrections (O(γ2

0 )), of relative order O(γ0)

with respect to the leading one. In figure 3 we plot (2.30a) (left) and (2.30b) (right) for

two different values of λ; one observes that ψ` (ψy) decreases (increases) when λ increases.

For further use in correlations, the logarithmic derivatives have the important property

that they do not depend on the normalization but only on the shape of the single inclusive

distribution.

2.4.1 “Limiting spectrum”: λ→ 0 (Q0 = ΛQCD)

Since the logarithmic derivatives are “infrared stable” (see above), we can take the limit

λ → 0 in (2.30a) (2.30b),2 and compare their shapes with the ones obtained in [5]; this is

done in figures 4 and 5, at LEP-I energy (EΘ0 = 91.2 GeV, Y = 5.2) and at the unrealistic

value Y = 15.

The agreement between the SD and the exact logarithmic derivatives is seen to be

quite good. The small deviations (≤ 20%) that can be observed at large ` (the domain we

deal with) arise from NMLLA corrections that one does not control in the exact solution.

The agreement gets better and better as the energy increases.

It is checked in appendix (A.4) that (2.18) satisfies the evolution equation (2.2); the

SD logarithmic derivatives (2.30a) and (2.30b) can therefore be used in the approximate

calculation of 2-particle correlations at λ 6= 0. This is what is done in the next section.

3. 2-Particle correlations inside one jet at λ 6=0 (Q0 6=ΛQCD)

We study the correlation between 2-particles inside one jet of half opening angle Θ within

the MLLA accuracy. They have fixed energies x1 = ω1/E, x2 = ω2/E (ω1 > ω2) and

2For this purpose, (2.17a) has been numerically inverted.

– 8 –
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Figure 4: SD logarithmic derivatives ψ` (left) and ψy (right) compared with the ones of [1] at

Y = 5.2.
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Figure 5: SD logarithmic derivatives ψ` (left) and ψy (right) compared with the ones of [1] at

Y = 15.

are emitted at arbitrary angles Θ1, Θ2. The constrain Θ1 ≥ Θ2 follows from the angular

ordering in the cascading process. One has Θ ≥ Θ1 (see figure 1 of [1]).

3.1 Variables and kinematics

The variables and kinematics of the cascading process are defined like in section 3.2 of [1].

3.2 MLLA evolution equations for correlations

The system of integral evolution equations for the quark and gluon jets two-particle corre-

lation reads (see eqs. (65) and (66) of [1])

Q(2)(`1, y2, η)−Q1(`1, y1)Q2(`2, y2) =
CF
Nc

∫ `1

0
d`

∫ y2

0
dy γ2

0(`+ y)

×
[
1− 3

4
δ(`− `1)

]
G(2)(`, y, η), (3.1)
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G(2)(`1, y2, η)−G1(`1, y1)G2(`2, y2) =

∫ `1

0
d`

∫ y2

0
dy γ2

0(`+ y)
[
1− aδ(`− `1)

]
G(2)(`, y, η)

+ (a−b)
∫ y2

0
dy γ2

0(`1+y)G(`1, y + η)G(`1 + η, y).

(3.2)

a is defined in (2.3) while

b =
1

4Nc

[
11

3
Nc −

4

3
nfTR

(
1− 2

CF
Nc

)2]
nf=3

= 0.915. (3.3)

3.3 MLLA solution at λ 6= 0

The quark and gluon jet correlators Cq and Cg have been exactly determined for any λ

in [1] by respectively setting Q(2) = CqQ1Q2 and G(2) = CgG1G2 into (3.1) and (3.2). In

the present work we limit ourselves to the exact MLLA solution which consists in neglecting

all O(γ2
0) corrections in equations (64) and (84) of [1].

3.3.1 Gluon jet

At MLLA, the logarithmic derivatives of ψ (2.23) can be truncated to the saddle point

derivatives ϕ`, ϕy of (2.16). The MLLA solution of (3.2) then reads (see (77) in [1])

Cg − 1
MLLA≈ 1− b (ϕ1,` + ϕ2,`)− δ1

1 + ∆̄ + ∆′ + δ1
(3.4)

where we introduce

∆̄ = γ−2
0

(
ϕ1,`ϕ2,y + ϕ1,yϕ2,`

)
, (3.5)

∆′ = γ−2
0

(
ϕ1,`δψ2,y + δψ1,yϕ2,` + δψ1,`ϕ2,y + ϕ1,yδψ2,`

)
; (3.6)

χ = ln

(
1 +

1

1 + ∆̄

)
, χ` =

1

χ

∂χ

∂`
, χy =

1

χ

∂χ

∂y
; (3.7)

δ1 = γ−2
0

[
χ`(ϕ1,y + ϕ2,y) + χy(ϕ1,` + ϕ2,`)

]
. (3.8)

(3.5) is obtained by using (2.25):

∆̄(µ1, µ2) = 2 cosh(µ1 − µ2) = O(1), (3.9)

which is the DLA contribution [7], while (3.6) (see appendix B) is obtained by using (2.25),

(2.27a) and (2.27b)

∆′(µ1, µ2) =
e−µ1δψ2,` + e−µ2δψ1,` + eµ1δψ2,y + eµ2δψ1,y

γ0
= O(γ0); (3.10)

it is a next-to-leading (MLLA) correction. To get (3.7), we first use (3.9), which gives

χ` = − tanh µ1−µ2

2

1 + 2 cosh(µ1 − µ2)

(
∂µ1

∂`
− ∂µ2

∂`

)
,
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χy = − tanh µ1−µ2

2

1 + 2 cosh(µ1 − µ2)

(
∂µ1

∂y
− ∂µ2

∂y

)
, (3.11)

and then (2.28) to get

χ` = βγ2
0

tanh µ1−µ2

2

1 + 2 cosh(µ1 − µ2)

eµ1Q̃1 − eµ2Q̃2

2
,

χy = −βγ2
0

tanh µ1−µ2

2

1 + 2 cosh(µ1 − µ2)

e−µ1Q̃1 − e−µ2Q̃2

2

which are O(γ2
0). They should be plugged into (3.8) together with (2.25), which gives

δ1 = βγ0
2 sinh2

(µ1−µ2

2

)

3 + 4 sinh2
(µ1−µ2

2

)
(
Q̃(µ1, υ1) + Q̃(µ2, υ2)

)
= O(γ0); (3.12)

it is also a MLLA term. For QÀ Q0 ≥ ΛQCD we finally get,

Cg(`1, `2, Y, λ)
MLLA≈ 1 +

1− bγ0 (eµ1 + eµ2)− δ1

1 + 2 cosh(µ1 − µ2) + ∆′(µ1, µ2) + δ1
(3.13)

where the expression for ∆′ (B.1) is written in appendix B. It is important to notice that

δ1 ' 0 near `1 ≈ `2 (µ1 ≈ µ2) while it is positive and increases as η gets larger (see (2.29)

and figure 2); it makes the correlation function narrower in |`1 − `2|.

3.3.2 Quark jet

The MLLA solution of (3.1) reads (see (93) in [1])

Cq − 1

Cg − 1

MLLA≈ Nc

CF

[
1 + (b− a)(φ1,` + φ2,`)

1 + ∆̄

2 + ∆̄

]
(3.14)

Inserting (3.5)–(3.8) into (3.14) we get

Cq(`1, `2, Y, λ)
MLLA≈ 1+

Nc

CF

(
Cg(`1, `2, Y, λ)−1

)[
1+(b−a)γ0(eµ1+eµ2)

1 + 2 cosh(µ1 − µ2)

2 + 2 cosh(µ1 − µ2)

]
.

which finally reduces (for QÀ Q0 ≥ ΛQCD) to

Cq(`1, `2, Y, λ)
MLLA≈ 1 +

Nc

CF

[(
Cg(`1, `2, Y, λ)− 1

)
+

1

2
(b−a)γ0

eµ1 + eµ2

1 + cosh(µ1 − µ2)

]
. (3.15)

3.4 Sensitivity of the quark and gluon jets correlators to the value of λ

Increasing λ translates into taking the limits β, ΛQCD → 0 (Y = ` + y ¿ λ, Q À Q0 À
ΛQCD) in the definition of the anomalous dimension via the running coupling constant

(γ0 = γ0(αs), see (44) in [1]). It allows to neglect `, y with respect to λ as follows

γ2
0(`+ y) =

1

β(`+ y + λ)

`+y¿λ≈ γ2
0 =

1

βλ
, (3.16)
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such that γ0 can be taken as a constant. Estimating (2.4) in the region λ À 1 ⇔ s ¿ 1

needs evaluating the kernel

1

ν + s

(
ω (ν + s)

(ω + s) ν

)1/β(ω−ν)( ν

ν + s

)a/β
s¿1≈ 1

ν

(
1 +

ω − ν
ων

s

)1/β(ω−ν) (
1− s

ν

)a/β

≈ 1

ν

[
1 +

1

ν

(
1

ω
− a
)
s

β
+

1

2!

1

ν2

(
1

ω
− a
)2 s2

β2
+

1

3!

1

ν3

(
1

ω
− a
)3 s3

β3
+ · · ·

]
. (3.17)

Integrating (3.17) over s, using (3.16) and
∫∞

0 sn e−λs = n!
λn , we get

G(ω, ν) ≈ 1

ν

[
1+

1

ν

(
1

ω
−a
)

1

βλ
+

1

ν2

(
1

ω
−a
)2( 1

βλ

)2

+
1

ν3

(
1

ω
−a
)3( 1

βλ

)3

+· · ·
]

=
1

ν − γ2
0 (1/ω − a)

,

which, after inverting the Mellin’s representation (132) of [1], gives

G(`, y)
x¿1' exp(2γ0

√
` y − aγ2

0y). (3.18)

Taking the same limit in (2.17a) and (2.17b) gives respectively

y − `
y + `

`+y¿λ≈ tanhµ⇒ µ =
1

2
ln
y

`
, µ− υ `+y¿λ≈ 1

2

y − `
λ
⇒ µ ∼ υ. (3.19)

Furthermore, we use (3.19) to show how (2.23) reduces to the exponent in (3.18)3

φ =
2√
β

µ− υ
sinhµ− sinh υ

`+y¿λ≈ 2γ0

√
` y,

(
ν0

ν0 + s0

)a/β
= −1

2

a

β
ln

(
1 +

`+ y

λ

)
− a

β
(µ− υ) ≈ −1

2

a

β

`+ y

λ
− a

β
(µ− υ)

`+y¿λ≈ −aγ2
0 y. (3.20)

Thus, since µ = 1
2 ln y

` (3.19), (2.30a) and (2.30b) simplify to

ψ`
`+y¿λ≈ γ0e

µ = γ0

√
y

`
, ψy

`+y¿λ≈ γ0e
−µ − aγ2

0 = γ0

√
`

y
− aγ2

0 . (3.21)

Therefore, taking the limit β, ΛQCD → 0 (λ → ∞) leads to the simplified model

described in section 4.2 of [1]. Setting, for the sake of simplicity, `1 ≈ `2 in (3.13)(3.14),

where δ1 vanishes, we obtain, in the high energy limit

Cg(`, y) ' 1+
1

3

[
1−2

(
b− 1

3
a

)
ψ`(`, y)

]
, Cq(`, y) ' 1+

Nc

CF

[
1

3
− 1

2

(
5

3
a+b

)
ψ`(`, y)

]
,

(3.22)

3we set β = 0 in (2.30a), (2.30b) and only consider terms ∝ a
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Figure 6: Varying λ at fixed Q0; ΛQCD dependence of Cg (left) and Cq (right)
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Figure 7: Varying λ at fixed ΛQCD = 253MeV ; Q0-dependence of Cg (left) and Cq (right) at

`1 = `2 = 3.0

where

b− 1

3
a =

1

18

(
11− 8

TR
Nc

+ 28
TR
Nc

CF
Nc
− 24

TR
Nc

C2
F

N2
c

)
nf=3
≈ 0.6,

5

3
a+ b =

2

9

(
11 +

TR
Nc

+
TR
Nc

CF
Nc
− 6

TR
Nc

C2
F

N2
c

)
nf=3
≈ 2.5. (3.23)

Thus, when λ increases by decreasing ΛQCD, ψ`∝γ0 decreases and the correlators (3.22)

increase. For LHC, a typical value is Y = 7.5 and we compare in figure 6, at fixed Q0, the

limiting case λ ≈ 0 (Q0 ≈ ΛQCD ≈ 253 MeV) with λ ≈ 1.0 (ΛQCD = 100 MeV) and λ ≈ 2.3

(ΛQCD = 25 MeV). As predicted by (3.22), the correlation increases when ΛQCD → 0 at

fixed Q0.

It is also sensitive to the value of Q0. As seen in (3.22), since y = ln Q
Q0
− `, if one

increases Q0 (since ΛQCD is fixed, γ0 does not change), thereby reducing the available

phase space, the correlators increase. This dependence of the correlators at fixed ΛQCD is

displayed in figure 7 for 0.3 GeV ≤ Q0 ≤ 1.0 GeV at `1 = `2 = 3.0 (soft parton).
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In the simplified model which leads to (3.22), Cg and Cq respectively go to the asymp-

totic values 4/3 and 1 + Nc/3CF . This is however not the case in the general situation

β 6= 0, as can be easily checked by using (2.30a) and (2.30b); for example, near the maxi-

mum of the distribution (µ ∼ v → 0), a contribution ∝ λ3/2/[(Y + λ)3/2 − λ3/2] occurs in

the term proportional to β in (3.22) that yields negative values of ψ` when λ increases.

3.5 Extension of the Fong and Webber expansion; its limit λ = 0

In the Fong-Webber regime, the energies of the two registered particles stay very close to

the peak of the inclusive hump-backed distribution that is, |`i− `max| ¿ σ ∝ [(Y +λ)3/2−
λ3/2]1/2 (see (2.22)).

Near the maximum of the single inclusive distribution `1 ∼ `2 ' Y/2 (µ, υ → 0, see

appendix A.2)

lim
µ,υ→0

C =

(
λ

Y + λ

)1/2

, lim
µ,υ→0

Ki =
3

2

υ2
i

µ3
i − υ3

i

, lim
µ,υ→0

Q̃ =
2

3
+

1

3

(
λ

Y + λ

)3/2

,

where C, Ki and Q̃ are defined in (2.31), (A.8) and (2.29). Keeping only the terms linear

in µ and the term quadratic in the difference (µ1 − µ2), one has

∆̄ + ∆′
`1∼`2'Y/2' 2+(µ1 − µ2)2 − aγ0 (2 + µ1 + µ2)− βγ0

[
2 + 3

λ3/2

(Y + λ)3/2 − λ3/2

]
(3.24)

and

δ1
`1∼`2'Y/2' 1

9
βγ0(µ1 − µ2)2

[
2 +

(
λ

Y + λ

)3/2
]

; (3.25)

δ1 can be neglected, since γ0(µ1− µ2)2 ¿ (µ1− µ2)2 ¿ 1. Then, in the same limit, (3.13),

(3.15) become

C0
g(`1, `2, Y, λ)

`1∼`2'Y/2' 1+
1− bγ0(2 + µ1 + µ2)

3 + (µ1−µ2)2−aγ0(2+µ1+µ2)−βγ0

[
2 + 3

λ3/2

(Y +λ)3/2 −λ3/2

] ,

(3.26)

C0
q (`1, `2, Y, λ)

`1∼`2'Y/2' 1 +
Nc

CF

[(
C0
g (`1, `2, Y, λ)− 1

)
+

1

4
(b− a)γ0 (2 + µ1 + µ2)

]
. (3.27)

Using (A.4) one has

(µ1−µ2)2 ' 9
Y + λ

[
(Y + λ)3/2 − λ3/2

]2 (`1 − `2)2, µ1+µ2 ' 3
(Y + λ)1/2

(Y + λ)3/2 − λ3/2
[Y −(`1 + `2)]

such that the expansion of (3.26), (3.27) in γ0 ∝
√
αs reads

C0
g(`1, `2, Y, λ) ' 4

3
−
(

(Y + λ)1/2(`1 − `2)

(Y + λ)3/2 − λ3/2

)2

+

(
2

3
+

(Y + λ)1/2 Y

(Y + λ)3/2 − λ3/2

)(
1

3
a− b

)
γ0+

1

3

(
2

3
+

λ3/2

(Y +λ)3/2 − λ3/2

)
βγ0

+

(
b− 1

3
a

)(
(Y + λ)1/2 (`1 + `2)

(Y + λ)3/2 − λ3/2

)
γ0 +O(γ2

0), (3.28)

– 14 –



J
H
E
P
0
9
(
2
0
0
6
)
0
1
4

C0
q (`1, `2, Y, λ) ' 1 +

Nc

3CF
+
Nc

CF

[
−
(

(Y + λ)1/2(`1 − `2)

(Y + λ)3/2 − λ3/2

)2

−1

4

(
2

3
+

(Y + λ)1/2 Y

(Y +λ)3/2 − λ3/2

)(
5

3
a+ b

)
γ0+

1

3

(
2

3
+

λ3/2

(Y +λ)3/2 − λ3/2

)
βγ0

+
1

4

(
5

3
a+ b

)(
(Y + λ)1/2 (`1 + `2)

(Y + λ)3/2 − λ3/2

)
γ0

]
+O(γ2

0). (3.29)

Therefore, near the hump of the single inclusive distribution, (3.13), (3.15) behave as a

linear functions of the sum (`1 + `2) and as a quadratic functions of the difference (`1− `2).

At the limit λ = 0, one recovers the Fong-Webber expression [3].

3.6 Comparison with the exact solution of the evolution equations: λ = 0

In figures 8 we compare the SD evaluation of the gluon correlator with the exact solution

of [1] at λ = 0. The difference comes from sub-leading corrections of order γ 2
0 that are not

present in (3.13). For example, −βγ2
0 ≈ −0.2 at Y = 5.2 occurring in the exact solution

(69) of [1] is not negligible but is absent in (3.13) and (3.15). That is why, the SD MLLA

curve lies slightly above the one of [1] at small `1 + `2. The mismatch becomes smaller at

Y = 7.5, since −βγ2
0 ≈ −0.13. However, when `1 + `2 increases, the solution of [1] takes

over, which can be explained by comparing the behavior of the SD MLLA δ1 obtained

in (3.12) and δc, δ̃c in [1]. Namely, while δ1 remains positive and negligible for `1 ≈ `2,

δc, δ̃c decrease and get negative when `1 + `2 → 2Y , see figure 9 (left), which makes the

correlations slightly bigger in this region. As |`1 − `2| increases, δ1 is seen in figure 9

(right) to play the same role as δc, δ̃c do in the solution [1] and therefore, to decrease the

correlation. The agreement between both methods improves as the energy scale increases.

A similar behavior holds for the quark correlator.

In [1], strong cancellations between the MLLA δ1 and the NMLLA δ2 were seen to

take place, giving very small δc and δ̃c; this eased the convergence of the iterative method

but raised questions concerning the relative size of MLLA and NMLLA corrections and the

validity of the perturbative expansion. However, since δ1 is itself, there, entangled with

some NMLLA corrections, no definitive conclusions could be drawn. The present work and

figure 9, by showing that, below, δc and δ̃c of [1] play the same role as the pure MLLA δ1

which is now calculated, suggests (though it is not a demonstration) that the perturbative

series is safe. It is indeed compatible with the following scheme: in [1], the pure MLLA part

of δ1 is the same as that in the present work; the cancellations in [1] occur between NMLLA

corrections included in δ1 and δ2; these are eventually of the same order of magnitude as

MLLA terms, but they are only parts of all NMLLA corrections; this leaves the possibility

that the sum of all NMLLA corrections to δ1 and all NMLLA terms of δ2 are separately

smaller than the pure MLLA terms of δ1, that is that strong cancellations occur between

NMLLA corrections, the ones included, because of the logic of the calculation, in [1], and

those which were not be taken into account.
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Figure 8: Comparison between correlators given by SD and in [1], at λ = 0.
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Figure 9: Comparison between the SD δ1 and δc, δ̃c of [1] at Y = 7.5, λ = 0.

3.7 Comparison with Fong-Webber and LEP-I data; how λ = 0 is favored

Let us consider, at the Z0 peak Y = 5.2 (EΘ = 91.2 GeV at LEP-I energy), the process

e+e− → qq̄. As can be induced from figure 8, the results obtained in the present work by

the (approximate) SD method are very close to the ones obtained in subsection 6.5 of [1] by

the exact solution of the evolution equations. Accordingly, the same comparison as in [1]

holds with respect to both Fong & Webber’s results [3] and OPAL data [6].

– 16 –



J
H
E
P
0
9
(
2
0
0
6
)
0
1
4

It is also noticeable that, since, at λ = 0, correlations already lye above (present)

experimental curves, and since an increase of λ tends to increase the predictions, the

limiting spectrum stays the best candidate to bring agreement with experiments.

4. Conclusion

Let us, in a few words, summarize the achievements, but also the limitations of the two

methods that have been used respectively in [1] (exact solution of MLLA evolution equa-

tions) and in the present work (steepest descent approximate evaluation of their solutions).

Achievements are threefold:

• in [1], MLLA evolution equations for 2-particle correlations have been deduced at

small x and at any λ; their (iterative) solution can unfortunately only be expressed

analytically at the limit λ→ 0;

• by the steepest descent method, which is an approximate method, analytical expres-

sions for the spectrum could instead be obtained for λ 6= 0, which enabled to calculate

the correlation at the same level of generality;

• one could move away from the peak of the inclusive distribution.

So doing, the limitations of the work of Fong & Webber have vanished. Their results

have been recovered at the appropriate limits.

The two methods numerically agree remarkably well, despite an unavoidable entangle-

ment of MLLA + some NMLLA corrections in the first one.

The limitations are the following:

• the uncontrollable increase of αs when one goes to smaller and smaller transverse

momenta: improvements in this directions mainly concern the inclusion of non-

perturbative contributions;

• departure from the limiting spectrum: it cannot of course appear as a limitation,

but we have seen that increasing the value of λ, by increasing the correlations, does

not bring better agreement with present data; it confirms thus, at present, that the

limiting spectrum is the best possibility;

• the LPHD hypothesis: it works surprisingly well for inclusive distributions; only

forthcoming data will assert whether its validity decreases when one studies less

inclusive processes (like correlations);

• last, the limitation to small x: it is still quite drastic; departing from this limit most

probably lye in the art of numerical calculations, which makes part of forthcoming

projects.

Expectations rest on experimental data, which are being collected at the Tevatron,

and which will be at LHC. The higher the energy, the safer perturbative QCD is, and the

better the agreement should be with our predictions. The remaining disagreement (but
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much smaller than Fong-Webber’s) between predictions and LEP-1 results for 2-particle

correlations stands as an open question concerning the validity of the LPHD hypothesis

for these observables which are not “so” inclusive as the distributions studied in [5]. The

eventual necessity to include NMLLA corrections can only be decided when new data

appear.
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A. Double derivatives and determinant

A.1 Demonstration of eq. (2.19)

We conveniently rewrite (2.11a) and (2.11b) in the form

∂φ

∂ω
=

2ω − ν
ω − ν `+

ν

ω − ν −
φ

ω − ν − λ
ν + 2s0

ω − ν +
1

βω(ω − ν)
, (A.1)

∂φ

∂ν
=
ω − 2ν

ω − ν y −
ω

ω − ν +
φ

ω − ν + λ
ω + 2s0

ω − ν −
1

βν(ω − ν)
. (A.2)

The Taylor expansion of (2.10) in (2.9) reads

φ(ω, ν, `, y) ≈ φ(ω0, ν0, `, y) +
1

2

∂2φ

∂ω2
(ω0, ν0)(ω − ω0)2

+
1

2

∂2φ

∂ν2
(ω0, ν0)(ν − ν0)2 +

∂2φ

∂ω∂ν
(ω0, ν0) (ω − ω0)(ν − ν0). (A.3)

The expressions of the second derivatives follow directly from (A.1) and (A.2)

∂2φ

∂ω2
= − ν

(ω − ν)2
(`+y+λ) +

φ

(ω − ν)2
− 2ω − ν
βω2(ω − ν)2

+
4

β(ω − ν)2(2s0 + ω + ν)
,

∂2φ

∂ν2
= − ω

(ω − ν)2
(`+y+λ) +

φ

(ω − ν)2
+

ω − 2ν

βν2(ω − ν)2
+

4

β(ω − ν)2(2s0 + ω + ν)
,

∂2φ

∂ω∂ν
=

ω

(ω − ν)2
(`+y+λ)− φ

(ω − ν)2
+

1

βω(ω − ν)2
− 4

β(ω − ν)2(2s0 + ω + ν)
.

Eq. (2.9) and its solution can be written in the form

G '
∫∫

d2v e−
1
2
vTAv =

2π√
Det A

where

v = (ω, ν), vT =

(
ω

ν

)
, DetA = Det




∂2φ
∂ω2

∂2φ
∂ω∂ν

∂2φ
∂ν∂ω

∂2φ
∂ν2


 =

∂2φ

∂ω2

∂2φ

∂ν2
−
(
∂2φ

∂ω∂ν

)2

.
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An explicit calculation gives

DetA = (`+ y + λ)2

[
β(ω + ν)φ− 4

(ω − ν)2
+

4(ω + ν)

(ω − ν)2(2s0 + ω + ν)

]

which, by using (2.15) leads to (2.19).

A.2 DetA (see eq. (2.19)) around the maximum

This is an addendum to subsection 2.3. `max written in (2.21) is close to the DLA value

Y/2 [7 – 9]. We then have µ ∼ υ → 0 for ` ≈ y ' Y/2. In this limit, (2.17a) and (2.17b)

respectively translate into

Y − 2`
µ,υ→0≈ 2

3

(Y + λ)3/2 − λ3/2

(Y + λ)1/2
µ, υ

µ,υ→0≈
√

λ

Y + λ
µ, (A.4)

while
∂µ

∂`
' −3

(Y + λ)1/2

(Y + λ)3/2 − λ3/2
(A.5)

should be used to get (2.22). An explicit calculation gives

lim
µ,υ→0

√
β1/2(Y + λ)3/2

πDetA(µ, υ)
=

(
3

π
√
β
[
(Y + λ)3/2−λ3/2

]
)1/2

,

where

DetA
µ,υ→0≈ β(Y +λ)3 (µ−υ)

(
1+ 1

2µ
2
) (

1+ 1
2υ

2
)
+(1+ 1

2µ
2)
(
υ+ 1

6υ
3
)
−
(
µ+ 1

6µ
3
) (

1+ 1
2υ

2
)

µ3

' 1

3
β(Y +λ)3

(
1− υ

3

µ3

)
=

1

3
β(Y + λ)3

[
1−

(
λ

Y + λ

)3/2
]
. (A.6)

A.3 The functions L(µ, υ), K(µ, υ) in eq. (2.26)

An explicit calculation gives

L(µ, υ) =
3

2

coshµ

sinhµ
− 1

2

(µ− υ) cosh υ sinhµ+ sinhυ sinhµ

(µ− υ) coshµ cosh υ + coshµ sinhυ − sinhµ cosh υ
, (A.7)

and

K(µ, υ) = −1

2
sinhυ

(µ− υ) cosh µ− sinhµ

(µ− υ) coshµ cosh υ + coshµ sinhυ − sinhµ cosh υ
. (A.8)

A.4 A consistency check

Let us verify that the evolution equation (2.2) is satisfied by (2.20) within the MLLA

accuracy. Differentiating (2.2) with respect to `, y yields the equivalent differential equation

G`y = γ2
0 (G− aG`)+O

(
γ4

0G
)
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that can be rewritten in the form

ψ`ψy + ψ`y = γ2
0 (1− aψ`) + O

(
γ4

0

)
; (A.9)

we have neglected next-to-MLLA corrections O(γ4
0) (of relative order γ2

0) coming from

differentiating the coupling γ2
0 in the sub-leading (“hard correction”) term ∝ a.

We have to make sure that (A.9) holds including the terms O(γ3
0). In the sub-leading

terms we can set ψ → ϕ (see (2.25)):

(ϕ` + δψ`)(ϕy + δψy) + ϕ`y = γ2
0(1− aϕ`). (A.10)

Isolating correction terms and casting them all on the l.h.s. of the equation we get

aγ2
0ϕ` + [ϕ`δψy + ϕyδψ` ] + ϕ`y = γ2

0 − ϕ`ϕy. (A.11)

By the definition (2.25) of the saddle point we conclude that the r.h.s. of (A.11) is zero

such that we have

ω0aγ
2
0 + [ω0δψy + ν0δψ` ] +

dω0

dy
= 0 , (A.12)

that is,

ω0

(
aγ2

0 + δψy
)

+ ν0δψ` +
dω0

dy
= 0 . (A.13)

First, we select the terms ∝ a:

aγ3
0

[
−1

2
Q̃− 1

2
tanh υ eµ +

1

2
tanh υ cothµ eµ +

1

2
tanh υ cothµ Q̃

+
1

2
Q̃− 1

2
tanh υ e−µ − 1

2
tanh υ cothµ e−µ − 1

2
tanh υ cothµ Q̃

]

= aγ3
0 [− tanh υ coshµ+ tanh υ cothµ sinhµ] ≡ 0.

From (2.15) one deduces
dω0

dy
=

1

2
βγ3

0Q̃,

that is inserted in (A.13) such that, for terms ∝ β, we have

−βγ3
0

[
1

2
eµ +

1

2
tanh υ

(
1+K

)
eµ − 1

2
C eµ − 1

2
CQ̃+

1

2
e−µ +

1

2
tanh υ

(
1+K

)
e−µ

+
1

2
C e−µ +

1

2
CQ̃

]
= −βγ3

0

[
coshµ+ tanh υ coshµ

(
1+K

)
− C sinhµ− 1

2
Q̃

]
,

which gives

−βγ3
0

[
coshµ− sinhµL− 1

2
Q̃

]
.

Constructing (see (2.29) and appendix A.3)

Q̃(µ, υ)− 2 coshµ = −3 coshµ+sinhµ
(µ− υ) cosh υ sinhµ+sinhυ sinhµ

(µ− υ) coshµ cosh υ+coshµ sinhυ − sinhµ cosh υ

= −2 sinhµL(µ, υ)

we have

−βγ3
0

[
coshµ− sinhµL− 1

2
Q̃

]
≡ 0.
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B. Analytical expression of ∆′(µ1, µ2) obtained from eq. (3.10)

Replacing (2.30a)(2.30b) in (3.10) and neglecting terms of relative order O(γ 3
0) which are

beyond the MLLA accuracy, we obtain

∆′ =
e−µ1δψ2,` + e−µ2δψ1,` + eµ1δψ2,y + eµ2δψ1,y

γ0

= −aγ0

[
eµ1 + eµ2 − sinh(µ1−µ2)(Q̃1 − Q̃2) + coshµ1 tanh υ2 + coshµ2 tanh υ1

− sinhµ1 tanh υ2 cothµ2 − sinhµ2 tanh υ1 cothµ1

+ sinh(µ1 − µ2)
(

tanh υ1 cothµ1Q̃1 − tanh υ2 cothµ2Q̃2

)]

−βγ0

[(
coshµ1 − sinhµ1C2

)
+
(

coshµ2 − sinhµ2C1

)
+sinh(µ1−µ2)(C1Q̃1−C2Q̃2)

+ coshµ1 tanh υ2

(
1 +K2

)
+ coshµ2 tanh υ1

(
1 +K1

)]
. (B.1)
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